Riemannian optimization methods for nonlinear eigenvector problems

FernUni Schweiz

Do, 01.12.2022, 17:00 - 18:00

In this talk, we address the numerical solution of nonlinear eigenvector problems arising in computational physics and chemistry. These problems characterize critical points of the underlying energy function on the infinite-dimensional Stiefel manifold. To efficiently compute energy minimizers, we propose a novel Riemannian gradient descent method induced by an energy-adaptive metric.  The non-monotone line search and the inexact evaluation of Riemannian gradients substantially improve the overall efficiency of the method. Numerical experiments illustrate the performance of the method and demonstrates its competitiveness with well-established schemes.
(Joint work with R. Altmann and D. Peterseim)

Link zur Website:

Weitere Informationen


  • University of Augsburg
    Tatjana Stykel
    Professor in the Institute of Mathematics and in the Centre for Advanced Analytics and Predictive Sciences (CAAPS)



Angewandte Wissenschaften, Technologie
Andere Bereiche

Art der Veranstaltung: Kolloquium/Symposium/Kongress

Zielpublikum: Fachleute, Studierende, Schulklassen - Sekundarstufe II




Die Veranstaltung findet online statt.

Zur Online Veranstaltung

Ein Angebot von
Mit Unterstützung von